Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Gigascience ; 112022 05 26.
Article in English | MEDLINE | ID: covidwho-1873911

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a complex strategy for the transcription of viral subgenomic mRNAs (sgmRNAs), which are targets for nucleic acid diagnostics. Each of these sgmRNAs has a unique 5' sequence, the leader-transcriptional regulatory sequence gene junction (leader-TRS junction), that can be identified using sequencing. High-resolution sequencing has been used to investigate the biology of SARS-CoV-2 and the host response in cell culture and animal models and from clinical samples. LeTRS, a bioinformatics tool, was developed to identify leader-TRS junctions and can be used as a proxy to quantify sgmRNAs for understanding virus biology. LeTRS is readily adaptable for other coronaviruses such as Middle East respiratory syndrome coronavirus or a future newly discovered coronavirus. LeTRS was tested on published data sets and novel clinical samples from patients and longitudinal samples from animal models with coronavirus disease 2019. LeTRS identified known leader-TRS junctions and identified putative novel sgmRNAs that were common across different mammalian species. This may be indicative of an evolutionary mechanism where plasticity in transcription generates novel open reading frames, which can then subject to selection pressure. The data indicated multiphasic abundance of sgmRNAs in two different animal models. This recapitulates the relative sgmRNA abundance observed in cells at early points in infection but not at late points. This pattern is reflected in some human nasopharyngeal samples and therefore has implications for transmission models and nucleic acid-based diagnostics. LeTRS provides a quantitative measure of sgmRNA abundance from sequencing data. This can be used to assess the biology of SARS-CoV-2 (or other coronaviruses) in clinical and nonclinical samples, especially to evaluate different variants and medical countermeasures that may influence viral RNA synthesis.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cell Culture Techniques , Computational Biology , Humans , Mammals/genetics , Models, Animal , RNA, Messenger/genetics , SARS-CoV-2/genetics
2.
AI Mag ; 43(1): 46-58, 2022.
Article in English | MEDLINE | ID: covidwho-1800403

ABSTRACT

Knowledge representation and reasoning (KR&R) has been successfully implemented in many fields to enable computers to solve complex problems with AI methods. However, its application to biomedicine has been lagging in part due to the daunting complexity of molecular and cellular pathways that govern human physiology and pathology. In this article we describe concrete uses of SPOKE, an open knowledge network that connects curated information from 37 specialized and human-curated databases into a single property graph, with 3 million nodes and 15 million edges to date. Applications discussed in this article include drug discovery, COVID-19 research and chronic disease diagnosis and management.

3.
Nat Commun ; 12(1): 1260, 2021 02 24.
Article in English | MEDLINE | ID: covidwho-1101645

ABSTRACT

A novel coronavirus, SARS-CoV-2, has been identified as the causative agent of the current COVID-19 pandemic. Animal models, and in particular non-human primates, are essential to understand the pathogenesis of emerging diseases and to assess the safety and efficacy of novel vaccines and therapeutics. Here, we show that SARS-CoV-2 replicates in the upper and lower respiratory tract and causes pulmonary lesions in both rhesus and cynomolgus macaques. Immune responses against SARS-CoV-2 are also similar in both species and equivalent to those reported in milder infections and convalescent human patients. This finding is reiterated by our transcriptional analysis of respiratory samples revealing the global response to infection. We describe a new method for lung histopathology scoring that will provide a metric to enable clearer decision making for this key endpoint. In contrast to prior publications, in which rhesus are accepted to be the preferred study species, we provide convincing evidence that both macaque species authentically represent mild to moderate forms of COVID-19 observed in the majority of the human population and both species should be used to evaluate the safety and efficacy of interventions against SARS-CoV-2. Importantly, accessing cynomolgus macaques will greatly alleviate the pressures on current rhesus stocks.


Subject(s)
COVID-19/immunology , COVID-19/virology , Lung/pathology , Lung/virology , Animals , Disease Models, Animal , Female , Immunity, Cellular/physiology , Interferon-gamma/metabolism , Macaca fascicularis , Macaca mulatta , Male , Pandemics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL